Dibromination of trans-Stilbene

CHEM HELP ASAP

experiment video: https://youtu.be/i50kMuplgNY

Purpose

The purpose of this experiment is to demonstrate a dibromination on trans-stilbene. The crude product is isolated by simple filtration and is pure enough to be characterized in its crude form.

Background

Addition reactions are commonly encountered in organic chemistry. Some additions, such as halogenations, are anti additions. Some additions, including the hydrogenation, are syn additions (Scheme 1). Still others, such as hydrohalogenations, are neither syn nor anti because the carbocation intermediate of the reaction does allow any stereocontrol in the products.

trans product from anti addition
cis product from syn addition

Scheme 1. Syn and anti additions on a cyclic alkene.
Dibrominations on alkenes with Br_{2} undergo an anti addition. The reaction can be easily demonstrated on trans-stilbene (1), a stable and readily available alkene reagent that is found in many organic chemistry labs (Scheme 2). The product is called 1,2-dibromo-1,2-diphenylethane (2).

Scheme 2. Today's reaction - dehalogenation of trans-stilbene

Procedure-1,2-dibromo-1,2-diphenylethane

In a 20 mL scintillation vial dissolve trans-stilbene (3.0 mmol) in 10 mL ether with stirring and then add Br_{2} (3.5 mmol) dropwise. Allow the reaction to stir for approximately 30 min at room temperature. Check the reaction by TLC (mobile phase = hexane). If starting material remains, add another aliquot $\mathrm{Br}_{2}(1.0 \mathrm{mmol})$, wait another 30 min , and re-check by TLC. Once the starting material has been consumed, filter the mixture with a Buchner funnel and a $125-\mathrm{mL}$ side-arm flask. Be sure to seat the filter paper with ether, not water. Rinse the filter cake with ether. Allow the isolated product to air dry, determine the product's mass, calculated a percent yield, record the melting range, and perform a TLC analysis of the product. Dispose of your mobile phase in a waste container. Interpret the provided NMR spectrum. Record all your observations in your notebook.

