

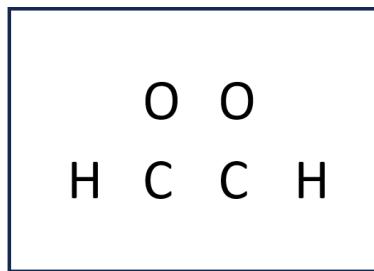
AP Chemistry Exam Study Guide

Mastering Multiple-Choice Questions

Example: *At what conditions does a real gas behave ideally?*

- A) High temperature and high pressure
- B) High temperature and low pressure ✓**
- C) Low temperature and low pressure
- D) Low temperature and high pressure

1. **Answer before looking at the choices.** Cover the answers with scratch paper and try to answer the question. Many multiple-choice options are designed to be misleading, so determining your answer beforehand reduces second-guessing. If you already know that real gases behave ideally at high temperature and low pressure, seeing misleading options won't shake your confidence.
2. **Use elimination when unsure.** If you don't know the answer immediately, remove obviously wrong options. Even if you're unsure when a real gas behaves ideally, you might remember it doesn't happen at **high pressure**, eliminating A and D. Now, you have a **50/50 shot** at guessing correctly.
3. **Select an answer to every question.** It seems obvious, but some students forget to record an answer, especially if it is a guess. Even if you have no idea what the correct answer should be, make sure you select one of the options. You still have a 25% chance of guessing correctly.

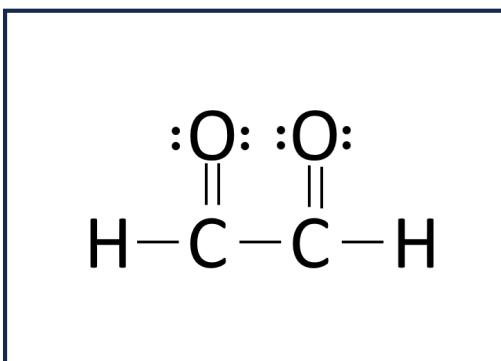

Tackling Free Response Questions (FRQs)

Example:

1. Oxaldehyde is a white, crystalline solid. It is a precursor to many synthetic products.

(a) The box below shows an incomplete Lewis structure for oxaldehyde.

Draw in all bonds and lone pairs. Note: The oxygen atoms are not bonded to each other.



(b) What is the dominant intermolecular force in oxaldehyde?

(c) Would oxaldehyde be miscible in aqueous solution? Justify your answer.

Answer:

(a)

(b) This molecule's dominant intermolecular force is dipole-dipole. The hydrogen atoms are NOT bonded to the oxygen atoms, ruling out hydrogen bonding.

(c) Compounds are miscible when they have similar intermolecular forces. Water is a polar compound with hydrogen bonding. Oxaldehyde does not have hydrogen bonding, but is a polar compound. Since both compounds are polar and "like dissolves like", oxaldehyde should be miscible in water.

1. **Read the entire question first.** Understanding all parts before answering helps you plan your approach and recognize how sections connect.
2. **Use question order.** Most FRQs are designed to guide you—answers to early parts often help with later ones.
3. **Step-by-step thinking:**
 - a. Part (a) (Lewis structure) leads to part (b) (intermolecular forces), which then informs part (c) (solubility in water).
 - b. Given that the question specifies oxygen atoms are not bonded together, you already have a **critical clue** for drawing the structure.
4. **Show your thought process clearly.** Explain your reasoning in a way the grader can follow. Instead of just stating, *"Like dissolves like,"* a stronger answer would be:
"Water is a polar compound with hydrogen bonding. Oxaldehyde, though polar, lacks hydrogen bonding. Since both substances are polar, oxaldehyde is miscible in water."
5. **Neat, organized calculations are key.** If graders can't follow your work, they **can't award you points**. Even if you make a minor arithmetic mistake, clearly showing your method increases your chance of partial credit.
6. **Use correct significant figures!** AP graders **will** take off points for sig fig errors. These are **easy points**—don't give them away!

Final Thoughts about both MCQs and FRQs

1. There's often more helpful information on a test than students realize. If you're stuck on a question—say, you need to know the charge of the sulfate anion—scan the test! Another question may include sulfate and give you the charge. **Use the test to your advantage.**
2. Time management is key. Many students lose time agonizing over a few tough questions, especially in the multiple-choice section. If you're unsure, **make an educated guess and move on**—you can always revisit tricky questions if time allows. Set a strict time limit per question and **stick to it**. It's better to answer every question (even with guesses) than to leave blanks.

- Finally, **breathe**. Test anxiety can be your biggest obstacle. Taking five seconds to pause and reset your mind is far more valuable than letting panic take over. **You know more than you think!** Stay calm, trust your preparation, and give it your best shot. **You got this!**

How the AP Exam weighs each Unit

Unit	Exam Weighting
Unit 1: Atomic Structure and Properties	7-9%
Unit 2: Compound Structure and Properties	7-9%
Unit 3: Properties of Substances and Mixtures	18-22%
Unit 4: Chemical Reaction	7-9%
Unit 5: Kinetics	7-9%
Unit 6: Thermodynamics	7-9%
Unit 7: Equilibrium	7-9%
Unit 8: Acids and Bases	11-15%
Unit 9: Thermodynamics and Electrochemistry	7-9%

How to Study Effectively

- Identify your weak spots.** Take a practice test, review mistakes, and identify topics you struggle with most, start with those topics.
- Recognize topic overlap.** Many questions combine multiple units (e.g., equilibrium often appears in acid-base problems, Lewis structures are needed to determine intermolecular forces). Strengthen foundational concepts to tackle these efficiently.
- Actively solve problems.** Don't just read solutions—work through problems **before** checking answers. Similarly, don't simply read through notes, rewrite or reorganize notes to engage with the material effectively.

- **Study with peers.** A study group or prep class exposes you to different perspectives and fills in gaps in your understanding. Other students will have strengths that can boost your weaknesses and vice versa.
- **Start early!** Prep **6-8 weeks before the exam**—cramming doesn't work for AP Chemistry. Your brain needs to build more neural connections. Those neurons take time to grow.

Want a **structured study plan** with live instruction, practice problems, and direct support from a **former college chemistry professor**? Join my **AP Chemistry Exam Prep Course!**

- **Live sessions focused on reviewing units and clarifying tough concepts**
- **Extra practice problems, unit assessments, summaries and guides for difficult problems, and video content accessible at all times.**
- **Optional FRQ-focused practice the week before the exam**
- **Full summaries after each class—never miss a thing!**

FREE consultation:

Email me at **Karin@ChemHelpASAP.com** to learn more!

Find **more free resources** on **YouTube, Facebook, Instagram, and at ChemHelpASAP.com**.

Earn your college credit—don't leave it to chance!